Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Pathog Glob Health ; : 1-9, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2319992

ABSTRACT

The suppressor of the cytokine signaling-1 (SOCS1) gene is a short sequence located on chromosome 16 that functions to induce an appropriate immune response and is an essential physiological regulator of interferon (IFN) signaling. In addition to comparing the global DNA and SOCS1 gene promoter methylation status between our patients with coronavirus disease 2019 (COVID-19) and healthy controls, this study demonstrates the effect of the SOCS1 rs33989964 polymorphism on patients with COVID-19. The study group included 139 patients diagnosed with COVID-19 in our hospital's clinics between June and December 2020, and the control group included 78 healthy individuals. After comparing the initial gene polymorphisms of the patients with the healthy control group, three separate clinical subgroups were formed. The gene polymorphism distribution and the methylation status of SOCS1 were examined in these clinical subgroups. Hypomethylation of the SOCS1 gene was observed in the COVID-19 patient group compared to the healthy control group (p = 0.001). Between the patients divided into two separate clinical subgroups, those with severe and mild infections, the Del/Del genotype of the SOCS1 gene was more common in patients with severe infection than in patients with mild infection (p = 0.018). Patients with the CA/CA and CA/Del genotypes were 0.201 times more likely to have a severe infection (95% CI: 0.057-0.716, p = 0.007). Having a non-Del/Del genotype was a protective factor against severe infection. The effect of the SOCS1 rs33989964 polymorphism and methylation status of the SOCS1 gene throughout the COVID-19 pandemic could be significant contributions to the literature.

2.
Journal of Pediatric Infectious Diseases ; 18(1):38-45, 2023.
Article in English | EMBASE | ID: covidwho-2186466

ABSTRACT

Objective The suppressor of cytokine signaling-1 (SOCS-1) gene is an essential physiological regulator of cytokine signaling. Tumor necrosis factor-alpha (TNF-alpha) is an important component of the immunological response. Herein, we aimed to investigate the effects of SOCS-1 (-1478 CA > Del) and TNF-alpha (-308) polymorphisms on disease susceptibility and prognosis in pediatric patients with coronavirus disease 2019 (COVID-19). Methods One-hundred fifty COVID-19 patients in the COVID-19 emergency department between September 2020 and April 2021 and 80 healthy volunteers (control group) without any additional disease were included. Baseline gene polymorphisms were compared between the patient and healthy control groups. Afterward, the gene polymorphism distribution was examined by forming two separate clinical patients' subgroups. Results While CA/CA and CA/Del gene variants of SOCS-1 were higher in the patient group, Del/Del genotype was more common in the control group (p < 0.05). The GG genotype of the TNF-alpha was significantly more common in the severe subgroup (p = 0.044). The GA genotype of TNF-alpha was associated with the risk of hospitalization (2.83-fold), while the GG genotype was found to be protective in terms of hospitalization (2.95-fold). Conclusions This study will be a guide in terms of the presence of high cytokine release genotypes and COVID-19-related cytokine release syndromes. Copyright © 2023 Georg Thieme Verlag. All rights reserved.

3.
Viruses ; 14(10)2022 09 21.
Article in English | MEDLINE | ID: covidwho-2043983

ABSTRACT

In this study, we developed a novel, multiplex qPCR assay for simultaneous detection of RIG-1, MDA5, and IFIT-1 at the mRNA level. The assay was validated in A549 cells transfected with in vitro transcribed RNAs. Both exogenous RNA-GFP and self-amplifying (saRNA-GFP) induced significant expression of RIG-1, MDA5, IFIT-1, as well as type I and III interferons. In contrast, native RNA from intact A549 cells did not upregulate expression of these genes. Next, we evaluated RIG-1, MDA5, and IFIT-1 mRNA levels in the white blood cells of patients with influenza A virus (H3N2) or SARS-CoV-2. In acute phase (about 4 days after disease onset) both viruses induced these genes expression. Clinical observations of SARS-CoV-2 typically describe a two-step disease progression, starting with a mild-to-moderate presentation followed by a secondary respiratory worsening 9 to 12 days after the first onset of symptoms. It revealed that the expression of RIG-1, MDA5, and MxA was not increased after 2 and 3 weeks from the onset the disease, while for IFIT-1 it was observed the second peak at 21 day post infection. It is well known that RIG-1, MDA5, and IFIT-1 expression is induced by the action of interferons. Due to the ability of SOCS-1 to inhibit interferon-dependent signaling, and the distinct antagonism of SARS-CoV-2 in relation to interferon-stimulated genes expression, we assessed SOCS-1 mRNA levels in white blood cells. SARS-CoV-2 patients had increased SOCS-1 expression, while the influenza-infected group did not differ from heathy donors. Moreover, SOCS-1 mRNA expression remained stably elevated during the course of the disease. It can be assumed that augmented SOCS-1 expression is one of multiple mechanisms that allow SARS-CoV-2 to escape from the interferon-mediated immune response. Our results implicate SOCS-1 involvement in the pathogenesis of SARS-CoV-2.


Subject(s)
COVID-19 , Interferons , Humans , Interferons/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Influenza A Virus, H3N2 Subtype/genetics , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , SARS-CoV-2/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , RNA-Binding Proteins , RNA, Messenger/genetics , Antiviral Agents
4.
J Clin Immunol ; 42(8): 1766-1777, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1990711

ABSTRACT

Haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1) is a recently discovered autoinflammatory disorder with significant rheumatologic, immunologic, and hematologic manifestations. Here we report a case of SOCS1 haploinsufficiency in a 5-year-old child with profound arthralgias and immune-mediated thrombocytopenia unmasked by SARS-CoV-2 infection. Her clinical manifestations were accompanied by excessive B cell activity, eosinophilia, and elevated IgE levels. Uniquely, this is the first report of SOCS1 haploinsufficiency in the setting of a chromosomal deletion resulting in complete loss of a single SOCS1 gene with additional clinical findings of bone marrow hypocellularity and radiologic evidence of severe enthesitis. Immunologic profiling showed a prominent interferon signature in the patient's peripheral blood mononuclear cells, which were also hypersensitive to stimulation by type I and type II interferons. The patient showed excellent clinical and functional laboratory response to tofacitinib, a Janus kinase inhibitor that disrupts interferon signaling. Our case highlights the need to utilize a multidisciplinary diagnostic approach and consider a comprehensive genetic evaluation for inborn errors of immunity in patients with an atypical immune-mediated thrombocytopenia phenotype.


Subject(s)
COVID-19 , Myelodysplastic Syndromes , Thrombocytopenia , Female , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Haploinsufficiency , Leukocytes, Mononuclear/metabolism , Bone Marrow , SARS-CoV-2 , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Interferons/metabolism
5.
Front Immunol ; 13: 902956, 2022.
Article in English | MEDLINE | ID: covidwho-1924106

ABSTRACT

Suppressors of Cytokine Signaling (SOCS) are intracellular proteins that negatively regulate the induction of cytokines. Amongst these, SOCS1 and SOCS3 are particularly involved in inhibition of various interferons. Several viruses have hijacked this regulatory pathway: by inducing SOCS1and 3 early in infection, they suppress the host immune response. Within the cell, SOCS1/3 binds and inhibits tyrosine kinases, such as JAK2 and TYK2. We have developed a cell penetrating peptide from the activation loop of the tyrosine kinase, JAK2 (residues 1001-1013), denoted as pJAK2 that acts as a decoy and suppresses SOCS1 and 3 activity. This peptide thereby protects against several viruses in cell culture and mouse models. Herein, we show that treatment with pJAK2 inhibited the replication and release of the beta coronavirus HuCoV-OC43 and reduced production of the viral RNA, as measured by RT-qPCR, Western blot and by immunohistochemistry. We confirmed induction of SOCS1 and 3 in rhabdomyosarcoma (RD) cells, and this induction was suppressed by pJAK2 peptide. A peptide derived from the C-terminus of IFNα (IFNα-C) also inhibited replication of OC43. Furthermore, IFNα-C plus pJAK2 provided more potent inhibition than either peptide alone. To extend this study to a pandemic beta-coronavirus, we determined that treatment of cells with pJAK2 inhibited replication and release of SARS-CoV-2 in Calu-3 cells. We propose that these peptides offer a new approach to therapy against the rapidly evolving strains of beta-coronaviruses.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Mice , Peptides/metabolism , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics
6.
Genes (Basel) ; 13(7)2022 06 25.
Article in English | MEDLINE | ID: covidwho-1911272

ABSTRACT

The epigenetic features contribute to variations in host susceptibility to SARS-CoV-2 infection and severity of symptoms. This study aimed to evaluate the relationship between the relative expression of microRNAs (miRNAs) and the severity of the disease in COVID-19 patients. The miRNA profiles were monitored during the different stages of the disease course using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of the selected 11 miRNAs were measured in the blood samples collected from 73 patients (moderate, n = 37; severe, n = 25; critically ill, n = 11, a total of 219 longitudinal samples) on hospitalization day and days 7 and 21. Expression changes were expressed as "fold change" compared to healthy controls (n = 10). Our study found that several miRNAs differed according to disease severity, with the miR-155-5p the most strongly upregulated (p = 0.0001). A statistically significant negative correlation was observed between the expression of miR-155-5p and its target gene, the suppressor of cytokine signaling 1 (SOCS1). The relative expression of miR-155-5p was significantly increased and SOCS1 was significantly decreased with the disease progression (r = -0.805 p = 0.0001, r = -0.940 p = 0.0001, r = -0.933 p = 0.0001 for admission, day 7, and day 21, respectively). The overexpression of miR-155-5p has significantly increased inflammatory cytokine production and promoted COVID-19 progression. We speculated that microRNA-155 facilitates immune inflammation via targeting SOCS1, thus establishing its association with disease prognosis.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Humans , MicroRNAs/metabolism , Prognosis , SARS-CoV-2 , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism
7.
Front Microbiol ; 12: 752597, 2021.
Article in English | MEDLINE | ID: covidwho-1470762

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused a crisis to global public health since its outbreak at the end of 2019. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of COVID-19, appears to efficiently evade the host immune responses, including interferon (IFN) signaling. Several SARS-CoV-2 viral proteins are believed to involve in the inhibition of IFN signaling. In this study, we discovered that ORF3a, an accessory protein of SARS-CoV-2, inhibited IFN-activated Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling via upregulating suppressor of cytokine signaling 1 (SOCS1), a negative regulator of cytokine signaling. ORF3a induced SOCS1 elevation in a dose- and time-dependent manner. RNAi-mediated silencing of SOCS1 efficiently abolished ORF3a-induced blockage of JAK/STAT signaling. Interestingly, we found that ORF3a also promoted the ubiquitin-proteasomal degradation of Janus kinase 2 (JAK2), an important kinase in IFN signaling. Silencing of SOCS1 by siRNA distinctly blocked ORF3a-induced JAK2 ubiquitination and degradation. These results demonstrate that ORF3a dampens IFN signaling via upregulating SOCS1, which suppressed STAT1 phosphorylation and accelerated JAK2 ubiquitin-proteasomal degradation. Furthermore, analysis of ORF3a deletion constructs showed that the middle domain of ORF3a (amino acids 70-130) was responsible for SOCS1 upregulation. These findings contribute to our understanding of the mechanism of SARS-CoV-2 antagonizing host antiviral response.

8.
Gene Rep ; 22: 101012, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1002539

ABSTRACT

Recently an outbreak that emerged in Wuhan, China in December 2019, spread to the whole world in a short time and killed >1,410,000 people. It was determined that a new type of beta coronavirus called severe acute respiratory disease coronavirus type 2 (SARS-CoV-2) was causative agent of this outbreak and the disease caused by the virus was named as coronavirus disease 19 (COVID19). Despite the information obtained from the viral genome structure, many aspects of the virus-host interactions during infection is still unknown. In this study we aimed to identify SARS-CoV-2 encoded microRNAs and their cellular targets. We applied a computational method to predict miRNAs encoded by SARS-CoV-2 along with their putative targets in humans. Targets of predicted miRNAs were clustered into groups based on their biological processes, molecular function, and cellular compartments using GO and PANTHER. By using KEGG pathway enrichment analysis top pathways were identified. Finally, we have constructed an integrative pathway network analysis with target genes. We identified 40 SARS-CoV-2 miRNAs and their regulated targets. Our analysis showed that targeted genes including NFKB1, NFKBIE, JAK1-2, STAT3-4, STAT5B, STAT6, SOCS1-6, IL2, IL8, IL10, IL17, TGFBR1-2, SMAD2-4, HDAC1-6 and JARID1A-C, JARID2 play important roles in NFKB, JAK/STAT and TGFB signaling pathways as well as cells' epigenetic regulation pathways. Our results may help to understand virus-host interaction and the role of viral miRNAs during SARS-CoV-2 infection. As there is no current drug and effective treatment available for COVID19, it may also help to develop new treatment strategies.

9.
J Allergy Clin Immunol ; 146(5): 1194-1200.e1, 2020 11.
Article in English | MEDLINE | ID: covidwho-728636

ABSTRACT

BACKGROUND: We studied 2 unrelated patients with immune thrombocytopenia and autoimmune hemolytic anemia in the setting of acute infections. One patient developed multisystem inflammatory syndrome in children in the setting of a severe acute respiratory syndrome coronavirus 2 infection. OBJECTIVES: We sought to identify the mechanisms underlying the development of infection-driven autoimmune cytopenias. METHODS: Whole-exome sequencing was performed on both patients, and the impact of the identified variants was validated by functional assays using the patients' PBMCs. RESULTS: Each patient was found to have a unique heterozygous truncation variant in suppressor of cytokine signaling 1 (SOCS1). SOCS1 is an essential negative regulator of type I and type II IFN signaling. The patients' PBMCs showed increased levels of signal transducer and activator of transcription 1 phosphorylation and a transcriptional signature characterized by increased expression of type I and type II IFN-stimulated genes and proapoptotic genes. The enhanced IFN signature exhibited by the patients' unstimulated PBMCs parallels the hyperinflammatory state associated with multisystem inflammatory syndrome in children, suggesting the contributions of SOCS1 in regulating the inflammatory response characteristic of multisystem inflammatory syndrome in children. CONCLUSIONS: Heterozygous loss-of-function SOCS1 mutations are associated with enhanced IFN signaling and increased immune cell activation, thereby predisposing to infection-associated autoimmune cytopenias.


Subject(s)
Anemia, Hemolytic, Autoimmune/immunology , Anemia, Hemolytic, Autoimmune/virology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/virology , Thrombocytopenia/immunology , Thrombocytopenia/virology , Adolescent , Anemia, Hemolytic, Autoimmune/genetics , Betacoronavirus , COVID-19 , Child, Preschool , Coronavirus Infections/immunology , Haploinsufficiency , Humans , Male , Mutation , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2 , Suppressor of Cytokine Signaling 1 Protein/genetics , Thrombocytopenia/genetics
10.
Front Microbiol ; 11: 1180, 2020.
Article in English | MEDLINE | ID: covidwho-609573

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an economically important pathogen that has evolved several mechanisms to evade type I IFN responses. Type III interferon (IFN-λ), an innate cytokine that primarily targets the mucosal epithelia, is critical in fighting mucosal infection in the host and has been reported to potently inhibit PEDV infection in vitro. However, how PEDV escapes IFN-λ antiviral response remains unclear. In this study, we found that PEDV infection induced significant IFN-λ expression in type I IFN-defective Vero E6 cells, but virus-induced endogenous IFN-λ did not reduce PEDV titers. Moreover, we demonstrated that PEDV escaped IFN-λ responses by substantially upregulating the suppressor of cytokine signaling protein 1 (SOCS1) expression, which impaired the induction of IFN-stimulated genes (ISGs) and dampened the IFN-λ antiviral response and facilitated PEDV replication in Vero E6 cells. We further showed that PEDV infection increased SOCS1 expression by decreasing host miR-30c-5p expression. MiR-30c-5p suppressed SOCS1 expression through targeting the 3' untranslated region (UTR) of SOCS1. The inhibition of IFN-λ elicited ISGs expression by SOCS1 was specifically rescued by overexpression of miR-30c-5p. Collectively, our findings identify a new strategy by PEDV to escape IFN-λ-mediated antiviral immune responses by engaging the SOCS1/miR-30c axis, thus improving our understanding of its pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL